
THE EMPEROR’S OLD ARMOR
Bob Blakley

blakley@vnet.ibm.com

The traditional computer security model is built
around a “reference monitor”, supported by hard-
ware protection mechanisms, which enforces
administratively defined security policies. The
reference monitor’s software is assumed to be of
high reliability and integrity. The reference moni-
tor is supplemented by strong cryptography for
those unfortunate moments when our data must
venture outside the cozy confines of its safe haven.

This model’s analogies are mostly military: the
image is that of an information fortress, with
walls, guards, interior compartments, and a
defending army. When you approach the informa-
tion fortress’s outer wall (“security perimeter”),
you present your “password” to the guardian of the
gate. The fortress’s defensive garrison (“access
control” facilities) protect your “confidential data”
until you want to send it out of the “security
perimeter”, perhaps through a “firewall”, at which
point you use a code (but only in your home coun-
try -- because cryptography is a “munition”!) The
system’s strong walls and trustworthy gate guards
(“integrity features of the Trusted Computing
Base”) protect it against the introduction of “Tro-
jan Horses” and “logic bombs”.

The information fortress model was designed for
(and in) a world in which computers were expen-
sive, solitary, heavy, and rare. But that world is
long gone. Information fortresses are not protect-
ing today’s information much more effectively
than Europe’s magnificent physical fortresses are
protecting today’s national borders.

The state of computer security is dismal. The same
exposures keep recurring; we make no practically
useful progress on the hard problems of integrity,
assurance, policy, and interoperability; and we are
less and less able to adapt the fortress model to
new technologies as they arise. Computers are
rapidly getting smaller, cheaper, and more richly
connected. More and more data resides on

machines incapable of meaningful physical secu-
rity (for example, laptop computers and “personal
digital assistants”) and designed -- by economic
necessity -- with no strong logical security. Even
the relatively few remaining information fortresses
have thrown open their gates to Ethernet, ISDN,
and fiber connections. At the other end of those
connections lies the worldwide Internet, on which,
as Steve Bellovin has observed, “There Be Drag-
ons”.

Technologies more disruptive than the Internet
loom on the horizon; object-orientation blurs the
distinction between data and code, robbing us of
one of our most powerful integrity tools (hard-
ware-enforced memory protection). At th .
e same time object orientation encourages us to
“reuse” code written by others -- in some cases
without benefit of access to the source text of the
code we reuse. “Intelligent Agent” architectures
invite us to execute other peoples’ code on our
systems and to write our own code and send it out
to make its way in the world without benefit of our
oversight. These agents are not distinguishable
from programs which we describe as “viruses”
today.

The software industry is in general not keeping up
with the escalating threat; most modern software
is designed without any thought given to security
up-front. The Internet, OMG CORBA, the World-
wide Web, and most Personal Computer operating
systems are examples of major components of the
worldwide software infrastructure into which
security is currently being retrofitted.

The Information Fortress model is based on three
principles; the security community’s dirty little
secret is that all three of these principles rest on
infirm foundations:

1. Policy

Policy scales poorly in every dimension. As the
number of subjects authorized to use the system,
the number of objects managed by the system,
and semantic complexity of operations provided
by the system increase, the policy administrator’s
job quickly spirals out of intellectual control.

2. System integrity and the reference monitor

“System integrity” assures that the security policy
of a system cannot be bypassed. The US National
Computer Security Center defines “integrity” as
follows [NC88]:

“sound, unimpaired, or perfect condition”

This sets the bar pretty high. But perfection really
is the standard, because any hole in the wall of the
fortress will let the enemy in.

Implementing a high-integrity system is prohibi-
tively costly and difficult.

3. Secrecy

The fortress model depends heavily on secrecy.
The security community has long recognized the
problems associated with secrecy and has shrunk
the secrecy perimeter to exclude everything except
cryptographic keys; this has been formalized as
Kerchoff’s principle: “security is in the keys”,
which is intended to mean that if the keys remain
confidential, the system is secure. But decades of
experience with the problems of passwords and
crypto key management suggest that a more accu-
rate formulation might be “insecurity is in the
keys”

The simple problem with secrets is that people are
not good at keeping them. But there are also com-
plicated problems. It is not always clear, for
example, what information constitutes a secret, or
what information will reveal it to a particular per-
son.

The central proposition of the paper, therefore, is:

No viable secure system design can be based on the
principles of Policy, Integrity, and Secrecy, because
in the modern world Integrity and Secrecy are not
achievable and Policy is not manageable.

This is why computer security is starting to fail -
and why it will continue to fail until it is re-built
on new foundations. The paper urges a search for
these new foundations, and suggests some guiding
principles:

• Assume low integrity.

• You can’t keep a secret.

• Security should be inherent, not imposed.

• Policy is evidence that security is imposed.

• Identity is a side-effect of policy (don’t depend
on it; don’t authenticate it).

• Trust is is evidence that security is imposed
(trust nothing and no one).

• Ease of use should be proportional to the proba-
bility that use is harmless.

• Make the user ask forgiveness, not permission.

• Plan for emergence.

• Privacy is not secrecy.

• Protection is not control.

• Security is not: confidentiality, integrity, avail-
ability.

• Good enough is good enough. Perfect is too
good.

• Evolve!

